ESTIMATING PRODUCT COMPOSITION AND THERMAL DYNAMICS IN A CONTINUOUS FEED BIOMASS TORREIFIER

Waste to Wisdom: Subtask 3.3

Biofuels and Biobased Product Development

Prepared By:
Isabella Caitlin Casini

May 2017

This material is based upon work supported by a grant from the U.S. Department of Energy under the Biomass Research and Development Initiative program: Award Number DE-EE0006297.
Estimating Product Composition and Thermal Dynamics in a Continuous Feed Biomass Torrefier

Isabella Caitlin Casini

Submitted to the Department of Engineering
of Smith College
in partial fulfillment
of the requirements for the degree of
Bachelor of Science

Denise A. McKahn, Honors Project Advisor

May 15, 2017
Table of Contents

Acknowledgments ... i
Acronyms ... ii
Symbols ... iii
List of Tables .. vii
List of Figures ... viii
List of Appendices ... xi
Abstract ... xii

Chapter 1 Background and Introduction
1.1 Biomass Energy Conversion Strategies 1
1.1.1 Transesterification ... 2
1.1.2 Anaerobic Digestion ... 3
1.1.3 Fermentation ... 4
1.1.4 Pyrolysis .. 4
1.1.5 Gasification .. 4
1.1.6 Combined Systems ... 5
1.1.7 Torrefaction ... 5
1.2 Waste to Wisdom Project 6
1.3 Contributions ... 6

Chapter 2 Proximate and Ultimate Analysis
2.1 Analysis of Proximate Data 8
2.2 Models to Estimate Ultimate Composition 13
2.3 Model Comparison ... 16
2.4 Estimation of Elemental Composition for SERC Data 22

Chapter 3 Biomass Higher Heating Value
3.1 Sensitivity Analysis .. 28
3.2 First Order Error Propagation 30
3.3 Bomb Calorimeter Calibration 32

Chapter 4 Experimental Verification of Air Entering
... 36
Table of Contents

4.1 Background on Past Models .. 37
4.2 Mass Balance .. 39
4.3 Calculations of Equilibrium Constants .. 44

Chapter 5 Thermal Model ... 47
5.1 Background on Past Models ... 47
5.1.1 Particle Models .. 47
5.1.2 Reactor Models ... 48
5.1.3 System Models .. 50
5.2 Energy Model .. 51
5.2.1 Experimental Hardware ... 51
5.2.2 Mathematical Model .. 55
5.2.3 Model Calibration ... 61
5.2.4 Results from hand tuning ... 63

Chapter 6 Conclusions and Future Work .. 68
6.1 Conclusions .. 68
6.2 Future Work .. 69
6.2.1 Parameter Identification Strategies 69

Appendices ... 71
B.1 Experimental Hardware ... 74

Bibliography ... 80
Abstract

This thesis considers results from the torrefaction of woody biomass species including redwood, tanoak, hardwood slash, Douglas fir and Douglas fir tops. The torrefier studied is a pilot-scale continuous feed electrically heated screw conveyance reactor used by the Schatz Energy Research Center (SERC). The thesis analyzed proximate analysis data finding that as degree of torrefaction increases (mass yield decreases), the volatile matter mass fraction decreases, the fixed carbon mass fraction increases and the ash mass fraction stays roughly constant. The proximate analysis data used two different models to predict elemental composition for the raw and torrefied biomass. The elemental composition was used to attempt and estimate the quantity and composition of the products leaving in gaseous phase, of which there is little experimental data. Assuming the gaseous product is primarily composed of carbon monoxide, carbon dioxide and water vapor, it is found that air must have entered the reactor to fulfill an elemental balance. This confirms observations of combustion seen during experimentation, with the assumption that air is entering through the airlocks. An error analysis was conducted on previously calculated higher heating values. A sensitivity analysis showed that temperature was the most influential parameter when determining higher heating values. Variation (standard deviation) for the higher heating values was found using first order error propagation and showed that feedstock was not a statistically significant parameter. Lastly, this thesis designed a thermal model depicting the thermal dynamics occurring to constituents in the torrefier during torrefaction. Thermal data gathered from thermocouples placed along the length of the torrefier are used as reference for the model. Air and product temperatures were measured. The current model has been tuned by hand with the aim of reducing the sum of the squared residuals between the experimental data and the modeled values. The current model is able to predict most of the dynamics found in the raw data; however, only part of the reactor has been modeled. Future work includes modeling the rest of the reactor, making some changes to the model and optimizing the model by using an unconstrained cost function in MATLAB to tune parameters.