

Lifecycle Assessment and Economics of Biochar from Forest Residues

Debbie Page-Dumroese Rocky Mountain Res. Station Ted Bilek Forest Products Lab

Maureen Puettmann WoodLife Environmental Consultants

August 23, 2017

For more information please visit WasteToWisdom.com

Waste to Wisdom Project Overview

- Forest residuals and slash are an immense, underutilized resource.
- Creating biochar is one by-product that can be created from these residues using small-scale near-woods production.
- Our presentation will include information on
 - Biochar applications
 - Lifecycle analyses
 - Biochar economics

Waste to Wisdom Project Overview

Utilizing forest residuals for the production of bioenergy and bio-based products.

Project Focus areas: • Feedstock development

- Biomass conversion technologies
- Economic and environmental assessment

WasteToWisdom.com

Briquettes

Torrefied

Biomass

Biochar

Webinar Outline

- 1. Environmental impacts of biochar application (Deb Page-Dumroese)
 - a) Why biochar?
 - b) Ecosystem responses
- 2. Lifecycle assessment of biochar (Maureen Puettmann)
 - a) Methods
 - b) Results Global Warming Impact
- 3. Economics of torrefied biomass production (Ted Bilek)
 - a) Analysis methodology
 - b) Economic results
- 4. Question and answer period (moderated by Ted Bilek)

What is happening?

- Millions of acres of overstocked forests in the western US
- Millions of acres of beetle-killed forests in Canada and western US
- Longer fire season and increasing fire severity
- Smaller burn windows

What to do with the nonmerchantable wood?

Current land management

- Forest restoration: thinning and salvage logging
- Pile and burn excess woody biomass
 - Cheap, easy, reduces fire risk
- Pile burning can alter soil properties
 - Long-term impacts

Other concerns

- Bioenergy harvesting could degrade long-term productivity
- HOWEVER
 - Biochar applications can replace C removed during harvesting
 - Improve soil conditions to lessen drought or nutrient stress

Reducing Risks and Increasing Benefits

Increase soil water

- Decreased wildfire
- Decrease insect risk
- Decrease disease risk

Increase soil carbon

- Climate change
- Carbon credits
- Decrease GHG emissions

The Role of Biochar

Residual biomass converted to biochar can:

- Provide value to unmerchantable material
- Increase tree growth
 - ~5-20% (or more)
- Restore
 - skid trails, log landings, road beds
 - water relations
 - carbon sequestration
- Improve soil resiliency
 - less erosion and leaching; improved infiltration; more resilient to floods and droughts

Presented by:

Maureen Puettmann WoodLife Environmental Consultants Corvallis, OR

Collaborators

Elaine Oneil Consortium for Research on Renewable Industrial Materials (CORRIM)

Mark Severy and David Carter Schatz Energy Research Center Humboldt State University

onsortium for Research on Renewable Industrial N

- Task:
 - What are the environmental impacts of producing biochar?
 - Is there a relationship between biochar quality and environmental impacts?
 - Is there a relationship between feedstock quality and environmental impacts?
 - Comparison of different biochar production systems
 - BSI system
 - Oregon Kiln
 - Air burners

- What environmental impacts are we looking at?
 - Energy consumption
 - Emissions generated? (eg. CO, CO₂, particulates, NOx, CH₄, SO₂)
 - Impact categories such as:
 - Global Warming Potential (GWP),
 - Ozone Depletion Potential
 - Smog Potential

LCA Method

Life cycle inventory

- Functional Unit
 - 1 mt of Biochar
- Cradle to gate (collection through production)
- Life cycle data
 - Forestry operations, feedstock collection, feedstock processing, and transportation (from Oneil, Waste to Wisdom PI)
 - Biochar production runs were performed by engineers at the Schatz Energy Center (Humboldt State U.)
 - US LCI database
 - Calculations

LCA System Boundary

Forestry Operations

Biochar Production - BSI System

- Testing Goals
 - Develop feedstock quality specifications
 - Measure consumption and production rates
 - Document operational intensity and labor requirements
 - Determine energy requirements
 - Assess environmental impact and fire hazards

LCA System Boundary

In Forest Operations (felling, yarding, loading/hauling biomass)

Feedstocks

LCA feedstock criteria < 25% MC wb <15% ash

Feedstocks

Species	Con	ifer	Con	ifer	Con	ifer	Con	ifer	Conifer		Hardwood		Juni	iper		
Comminution Method	Gro	Ground		Ground		Ground		Chip med		Chip small		Chip small		und	Gro	und
Contaminant	no	ne	2/3 k 1/3	oole, tops	9%	soil	no	ne	no	none		none		s ved*		
Moisture Content	15%	19%	17%	15%	14%	16%	37%	25%	22%	20%	15%	16%	10%	10%		
Ash Content	2%	2%	7%	2%	14%	14%	0.7%	0.1%	3%	3%	0.3%	1%	26%	21%		
Particle Size (% mass) (<0.1"/0.1"-1"/>1")	12/8	30/9	14/7	77/9	14/7	77/8	1/9	9/0	31/6	59/0	20/7	79/1	28/6	54/8		

Results - Power Pallet – 1 mton of Biochar

Results – Power Pallet - 1 mton of Fixed Carbon

Results-Diesel Generator- 1 mton of Biochar

Results-Diesel Generator-1 mton of Fixed Carbon

GWP as related to Biochar Quality (per 1 ton *fixed carbon* in the biochar)

Conclusions - LCA of Biochar

- Relationship between biochar quality and CO₂ emissions
- Biochar Production (BSI): Feedstock should have <25% MC_{wb} and <15% ash

Conclusions - LCA of Biochar

Conclusions - LCA of Biochar

- Does quality come with an environmental cost?
 - Biochar equivalent output higher quality biochar resulted in a higher GWP impacts
 - When the impact was scaled to a ton of fixed carbon
 - the differences in overall impact based on biochar quality was reduced
 - Lower biochar quality had the highest environmental cost.

Conclusions – Next steps

- Setting standards for biochar (% fixed carbon)
 - –What amount of environmental impact are we willing to accept for biochar quality?
 - –What is an acceptable quality of feedstock and biochar to make the production process a "carbon benefit"
 - -Do other impacts categories respond to biochar quality like GWP?
- Impact of taking the forest residues (feedstocks) to town for processing?
- Other biochar production systems (eg. Oregon Kiln, Air Burners)?

The Economics of Near-Forest Woody Biomass Biochar Manufacture

E.M. (Ted) Bilek

Economist USDA Forest Service, Forest Products Laboratory p. 608-231-9507 tbilek@fs.fed.us www.fs.fed.us

- » Produced 75 kg/hr of biochar with no external inputs.
- » System can be operated by one person.

- » Dry biomass with waste heat
- » Provide electricity with gasifier generator set

Biochar Machine

Gasifier

Generator

Biomass In

Belt Dryer

Biochar Out

- » Dry biomass with waste heat
- » Provide electricity with gasifier generator set

Biochar Machine

Ladder Fuels

Gasifier

Generator

Biomass In

Belt Dryer

Biochar Out

- » Dry biomass with waste heat
- » Provide electricity with gasifier generator set

Biochar Machine

Gasifier

Generator

Biomass In

Belt Dryer

Biochar Out

Economics outline

12

Biochar overview and system logic;
Analysis methodology;
Results;

Conclusions.

>>>

What to use to make biochar?

Preferably, a feedstock without much variation...

wood chips (<3/4 inch)

micro-chips (<1/4 inch) sawdust (<5/32 inch)

Biochar-ready feedstock production costs

Biochar feedstock input is 0.50 BDT/PMH

Microchipper (Peterson 4300): Machine rate = \$13.12/BDT (w/loader

Productivity = 33.85 BDT/PMH

Basic biochar production assumptions:

- » Commercial-scale system cost: \$489,500 (120 tons/year)
 - » Biochar unit: Biochar Solutions machines @ \$250,000 & \$400,000
 - » Dryer: Norris Thermal Technologies Belt-o-matic 123B @ \$45,000
- » Economic life: 10 years (8 hours/day, 250 days/year)
- » Salvage value: 20%
- » Feedstock throughputs: 0.354 & 0.502 BDT/PMH
- » Biochar mass conversion = 13.5% & 15.9%
- » Operation = 2,500 SMH @ 80% productivity
- » Feedstock = Microchips @ \$13.12/BDT (= \$8.43/green ton, including loader, but not transport)

Other important assumptions:

- » Electricity supply: PowerPallet (PP20) gasifier genset from All Power Labs @ \$0.3869/kWh – also provides drying heat
- » Loader cost @ \$22.57/SMH (machine cost calculation w/o labor)
- » Discount rate: 10%
 (pre-tax nominal w/ cost & revenue inflation @ 1% & 0% respectively)
- » Product value: \$2,000/BDT, FOB plant
- » Tax losses are: recognized immediately (not carried forward or lost)
- » Loan = 40% of initial capital cost
- » Loan terms: 6 years at 6.00% with monthly payments

HUMBOLDT STATE UNIVERSITY

Methodology: Discounted Cash Flow Analysis

Note: all costs and revenues are in Year 0 dollars.

1.21

0.79

Variable operating	g costs		
		Plant operators	1.00
Varia	able labor cost (\$/worker	/scheduled hour)	\$ 33.25
	Electri	city cost (\$/kWh)	\$ 0.3869
	1	Binder cost (\$/lb)	\$ -
Standa	ardized repairs & mainter	ance percentage	20.0%
	Repairs & main	tenance function	Uniform
	Liquid pr	opane (\$/gallon)	\$ 2.39
	Periodic	consumables cost	
		•	
		•	
Addition	al periodic consumables	cost	
		•	
Misc.	variable operating costs	\$/scheduled hr.)	\$ 22.570
Other va	ariable consumables cost	(\$/ton biochar	\$ -
	Finished goods tran	sport cost (\$/ton)	\$
	0	1	
⁷ onversion variah	les		
Piochar system f	adstack throughput (hor	a dry tons/DMU)	0.50
Biochar system mass	s conversion/hone-dry ton	offeedstock (%)	15.9%
biochar system mass	Feedstock removal (bo	ne-dry tons/acre)	18.00
	Electrica	l an anon no quined	0.14W
	Dia Januaria d	(ll. / D : l. m. t. m.)	9 KW
	ыnaer requirea	(ID/BIOCHARton)	-
1 1 (Liquia propane (gallons/	productive nour)	-
al production (millio	on Btu/Bone-dry ton feeds	tock throughput)	2.94
	Feedstock	moisture content	35.8%

		variable operating costs
Project planning life	10 years	Plant operators
d operating days/year	250	Variable labor cost (\$/worker/scheduled hour)
ing hours (daily SMH)	8.0	Electricity cost (\$/kWh)
Cost inflation rate	1.0%	Binder cost (\$/lb)
Revenue inflation rate	0.0%	Standardized repairs & maintenance percentage
		Repairs & maintenance function
		Liquid propane (\$/gallon)
um on invested capital	8.5%	Periodic consumables cost
osit interest rate (APR)	1.50%	
cost that is financed)	40.0%	
an interest rate (APR)	6.00%	Additional periodic consumables cost
Loan term	6.00 years	
osit payments per year	12	Misc. variable operating costs \$/scheduled hr.)
age of next year's sales	2.0%	Other variable consumables cost (\$/ton biochar
		Finished goods transport cost (\$/ton)
Deperciation code	DB	Conversion variables
asset value multiplier	100%	Biochar system feedstock throughput (bone-dry tons/PMH)
		Biochar system mass conversion/bone-dry ton of feedstock (%)
_		Feedstock removal (bone-dry tons/acre)
dministration (\$/year)	\$ 2,000	Electrical energy required
stration staff(number)	-	Binder required (lb/Biochar ton)
		Liquid propane (gallons/productive hour)
Site lease (\$/year)	\$ -	Thermal production (million Btu/Bone-dry ton feedstock throughput)
uipment lease (\$/year)	\$ -	Feedstock moisture content
ual insurance percent	1.6%	System start-up time (hours/day)
ial fixed costs (\$/year)	\$ -	System shut-down time (hours/day)

Overall project assumptions	
Project planning life	10 yea
Standard operating days/year	25
Scheduled daily machine operating hours (daily SMH)	8
Cost inflation rate	1.0
Revenue inflation rate	0.0
Project financing	
Required mininum nominal pre-tax risk premium on invested capital	8.5
Deposit interest rate (APR)	1.50
Initial gearing (% of total start-up cost that is financed)	40.0
Loan interest rate (APR)	6.00
Loan term	6.00 yea
Loan and deposit payments per year	
Working capital required as a percentage of next year's sales	2.0
Capital assets	
Deperciation code	DB
Terminal asset value multiplier	100
Fixed operating costs	
General administration (\$/year)	\$ 2,00
Administration staff(number)	-
Site lease (\$/year)	\$
Equipment lease (\$/year)	\$
Annual insurance percent	1.6
Other annual fixed costs (\$/year)	\$

BASIC ASSUMPTIONS

Taxes	
Income tax rate	40.0%
Tax losses or net tax credits are	recognized immediately
Biomass utilization tax credit	\$ -
Ad valorem (property) tax mill rate	-

Summary Financial Measures:	Before-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions	& tax	Before-tax	After-tax
NPV(\$000)	\$ (351)	\$ (338)	\$ (210)
Real IRR (adjusted by cost inflation at 1.0%)	-21.4%	-26.2%	-17.3%
Nominal IRR	-20.6%	-25.5%	-16.4%
NOTE: Nominal discount rates used to calculate NPVs and B-E values	10.00%	8.40%	5.04%
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)		IRR seed =	-50%
Break-even avg. Biochar product value (\$/ton)	\$ 2,839	\$ 2,750	\$ 2,662
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$ (62)	\$ (54)	\$ (47)
Medium-term operating B-E avg. product value (\$/ton)		\$ 2,171	
Short-term operating B-E avg. product value (\$/ton)	\$ 2,040		

Summary Financial Measures:		e-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions	đ	Гил	Б ејоте-нил	Анет-шл
NPV(\$000)	\$	(351)	\$ (338)	\$ (210)
Real IRR (adjusted by cost inflation at 1.0%)		-21.4%	-26.2%	-17.3%
Nominal IRR		-20.6%	-25.5%	-16.4%
NOTE: Nominal discount rates used to calculate NPVs and B-E values		10.00%	8.40%	5.04%
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)			IRR seed =	-50%
Break-even avg. Biochar product value (\$/ton)	\$	2,839	\$ 2,750	\$ 2,662
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$	(62)	\$ (54)	\$ (47)
Medium-term operating B-E avg. product value (\$/ton)			\$ 2,171	
Short-term operating B-E avg. product value (\$/ton)	\$	2,040		

For-profit biochar production at a demonstration scale (72 tons/year) is not recommended without additional capital or operating subsidies.

U.S. DEPARTMENT OF

Summary Financial Measures:	Before-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions	& tax	Before-tax	After-tax
NPV (\$000)	\$ (351)	\$ (338)	\$ (210)
Real IRR (adjusted by cost inflation at 1.0%)	-21.4%	-26.2%	-17.3%
Nominal IRR	-20.6%	-25.5%	-16.4%
NOTE: Nominal discount rates used to calculate NPVs and B-E values	10.00%	8.40%	5.04%
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 0.00%)		Mit Secu -	50%
Break-even avg. Biochar product value (\$/ton)	\$ 2,839	\$ 2,750	\$ 2,662
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$ (62)	\$ (54)	\$ (47)
Medium-term operating B-E avg. product value (\$/ton)		\$ 2,171	
Short-term operating B-E avg. product value (\$/ton)	\$ 2,040		

Break-even product values are the prices at which NPVs=\$0

Summary Financial Measures:	Before-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions	& tax	Before-tax	After-tax
NPV (\$000)_	\$ (351)	\$ (338)	\$ (210)
Real IRR (adjusted by cost inflation at 1.0%)	-21.4%	-26.2%	-17.3%
Nominal IRR	-20.6%	-25.5%	-16.4%
NOTE: Nominal discount rates used to calculate NPVs and B-E values	10.00%	8.40%	5.04%
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)		IRR seed =	-50%
Break-even avg. Biochar product value (\$/ton)	\$ 2,839	\$ 2,750	\$ 2,662
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$ (62)	\$ (54)	\$ (47)
меанит-term operating Б-Е avg. proauct value (\$710n)		Φ 2,171	
Short-term operating B-E avg. product value (\$/ton)	\$ 2,040		

- Break-even product values are the prices at which NPVs=\$0
- Break-even feedstock costs are the costs (or subsidies) at which NPVs=\$0

Summary Financial Measures:	Before-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions	& tax	Before-tax	After-tax
NPV (\$000)	\$ (351)	\$ (338)	\$ (210)
Real IRR (adjusted by cost inflation at 1.0%)	-21.4%	-26.2%	-17.3%
Nominal IRR	-20.6%	-25.5%	-16.4%
NOTE: Nominal discount rates used to calculate NPVs and B-E values	10.00%	8.40%	5.04%
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)		IRR seed =	-50%
Break-even avg. Biochar product value (\$/ton)	\$ 2,839	\$ 2,750	\$ 2,662
Break-even delivered vr. 1 feedstock cost (\$/green ton)	\$ (62)	\$ (54)	<u>\$</u> (47)
Medium-term operating B-E avg. product value (\$/ton)		\$ 2,171	
Short-term operating B-E avg. product value (\$/ton)	\$ 2,040		

- Break-even product values are the prices at which NPVs=\$0
- Break-even feedstock costs are the costs (or subsidies) at which NPVs=\$0
- Medium and short-term product values will keep the plant open either for the next year or for the next day.

Commercial-scale Results (120 tons/year) (w/product price = \$2,000/BDT)

Summary Financial Measures:		re-finance		
Semi-mobile Biochar Conversion System from Biochar Solutions		x tax	Before-tax	After-tax
NPV (\$000)	\$	8	\$ 68	\$ 90
Real IRR (adjusted by cost inflation at 1.0%)		9.2%	10.8%	8.8%
Nominal IRR		10.3%	11.9%	9.9%
NOTE: Nominal discount rates used to calculate NPVs and B-E values		10.00%	0.10%	5.0170
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)			IRR seed =	-50%
Break-even avg. Biochar product value (\$/ton)	\$	1,989	\$ 1,910	\$ 1,831
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$	10	\$ 17	\$ 25
Medium-term operating B-E avg. product value (\$/ton)			\$ 1,384	
Short-term operating B-E avg. product value (\$/ton)	\$	1,277		

 NPVs are positive and nominal IRRs are all above the discount rates;

Commercial-scale Results (120 tons/year) (w/product price = \$2,000/BDT)

Summary Financial Measures:	Before	e-finance				
Semi-mobile Biochar Conversion System from Biochar Solutions		k tax	Before-tax		After-tax	
NPV(\$000)	\$	8	\$ 68	\$	90	
Real IRR (adjusted by cost inflation at 1.0%)		9.2%	10.8%		8.8%	
Nominal IRR		10.3%	11.9%		9.9%	
NOTE: Nominal discount rates used to calculate NPVs and B-E values		10.00%	8.40%		5.04%	
(Assuming 1.0% cost inflation, 0.0% revenue inflation, and 40.0% gearing at 6.00%)			INN seeu –		-3076	
Break-even avg. Biochar product value (\$/ton)	\$	1,989	\$ 1,910	\$	1,831	
Break-even delivered yr. 1 feedstock cost (\$/green ton)	\$	10	\$ 17	\$	25	
Medium-term operating B-E avg. product value (\$/ton)			\$ 1,384			
Short-term operating B-E avg. product value (\$/ton)	\$	1,277				

- NPVs are positive and nominal IRRs are all above the discount rates;
- Break-even product values are below the target price.
- Feedstock prices are positive.

Cost breakdown: Before-finance & tax

Biochar plant's simple sensitivity analysis

Biochar plant's profitability sensitivity to the operating day length

Biochar plant's profitability sensitivity to the project planning life

U.S. DEPARTMENT OF

Economic Drivers

- Alternative disposal costs

 Pile burn (\$150-\$850/acre)
 Torrefaction (value = \$200-\$250/ton delivered)
 - Other energy

• Markets...

Biochar Markets

» Soils (primary market)

- » Need to match specific biochars to crops and soil types
- » Biggest potential lies where crops are higher-valued, especially where water is scarce or costly
- » Even larger value-added potential lies in possible replacement for activated carbon (esp. trace mercury removal or soil decontamination, water or air filtration, public health/sanitation, etc.)
- » Composting (can reduce composting time, GHG emissions, and odors)
- » Growing media (i.e. vermiculite and perlite and peat moss substitutes)
- » Other bio-based wastes can also be made into biochar
- » Chicken & egg issues with respect to biochar's costeffectiveneness (which lead to financing issues which limit scale economies)

Conclusions

» Small-scale near-woods biochar production may make economic sense.

- » Costs are relatively high;
- » Labor is a big part of the total cost.
- » Costs as presented could be lowered.

» Biochar represents a highly value-added product made from waste resources. It can be used directly and offers the opportunity to be combined with other ingredients to create additional value. It can be produced near a forest and offers opportunities to concentrate biomass value to facilitate more cost-effective transport.

Conclusions

» Small-scale near-woods biochar production may make economic sense.

- » Costs are relatively high;
- » Labor is a big part of the total cost.
- » Costs as presented could be lowered.

» Biochar represents a highly value-added product made from waste resources. It can be used directly and offers the opportunity to be combined with other ingredients to create additional value. It can be produced near a forest and offers opportunities to concentrate biomass value to facilitate more cost-effective transport.

More research is needed.

Thank You

Questions?

Webinar Info at: http://www.wastetowisdom.com/webinars/ General Contact Info at: http://www.wastetowisdom.com/contact-us/

Debbie Page-Dumroese.

Research Soil Scientist USDA Forest Service Rocky Mountain Research Station Moscow, ID ddumroese@fs.fed.us

Maureen Puettmann

Forestry Consultant WoodLife Environmental Consultants Corvallis, OR <u>maureen.puettmann@woodlifeconsulting.com</u>

E.M. (Ted) Bilek, Ph.D. Economist USDA Forest Service Forest Products Laboratory, Madison, WI tbilek@fs.fed.us

