

Production of Quality Feedstock From Forest Residues for Emerging Biomass Conversion Technologies

For more information please visit WasteToWisdom.com

Introduction to Waste to Wisdom

Han-Sup Han

Professor of Forestry at Humboldt State University, Arcata, CA

Principle Investigator for the Waste to Wisdom project

Forest residues

Forest residues

Forest Residues

Forest residues

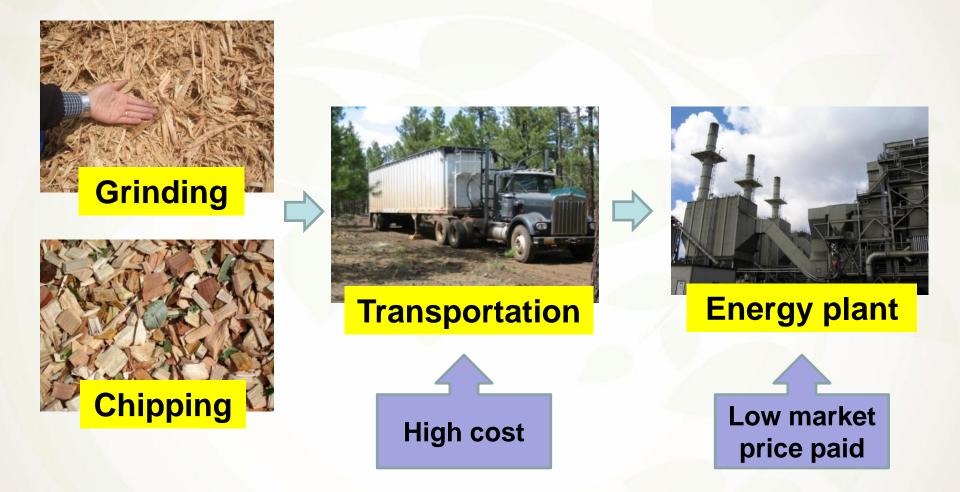
✓ Materials difficult to handle:

- Mix of various species/size/shape
- Low bulk density
- Pre-processing in the woods needed for efficient handling and utilization

In-woods biomass handling methods

Grinding

Chipping



Typical in-woods biomass operation

Challenges in biomass harvesting...

"Low traveling speeds on forest roads"

Felling/Bunching \$6.37/BDT (11.5%)

Skidding \$6.08/BDT (11.0%)

Loading \$4.08/BDT (7.4%)

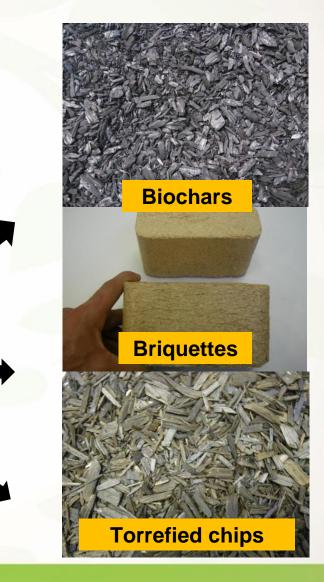
Grinding \$12.63/BDT (22.9%)

Total Cost = \$55.27/BDT (Stump-to-Plant)

Hauling \$26.11/BDT (47.2%)

(30 – 36 miles one-way)

Integration of biomass conversion technologies (BCTs) with in-woods biomass operations



In-woods biomass conversion

- Decrease transportation and handling costs
- ✓ Increase product values

Waste to Wisdom – Project goal

Production of bioenergy and bio-based products through effective utilization of forest residues by development of new biomass conversion technologies and optimized biomass operations logistics.

Waste to Wisdom – project organization

Feedstock Development

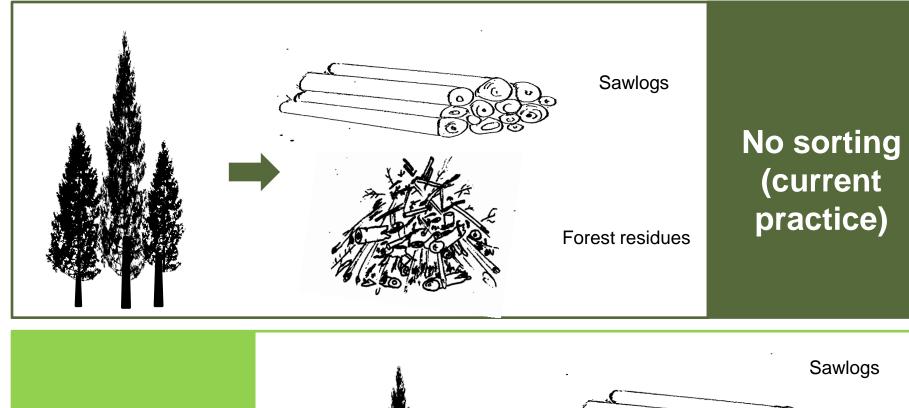
- Forest residue sorting, arranging, baling, chipping/grinding, and screening to produce quality feedstock
- Biomass Conversion Technology Development
 - ✓ Gasification, torrefaction, and briquetter
- Bioenergy and Biobased Products Development Analysis
 - ✓ Determining economic and environmental success of utilizing forest residues for production of bioenergy, and biobased products

Forest residues: sorting and arranging for production of quality feedstock

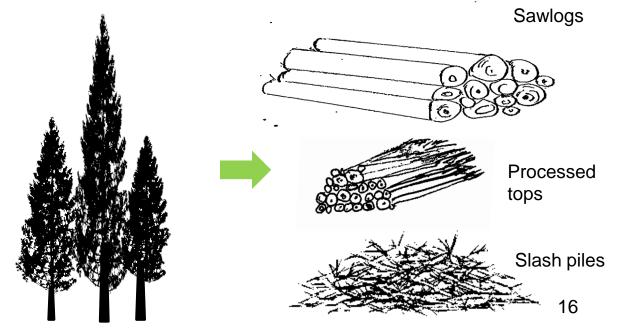
Presented by:

Anil Raj Kizha., PhD.

Assistant Professor of Forest Operations School of Forest Resources University of Maine Orono, Maine



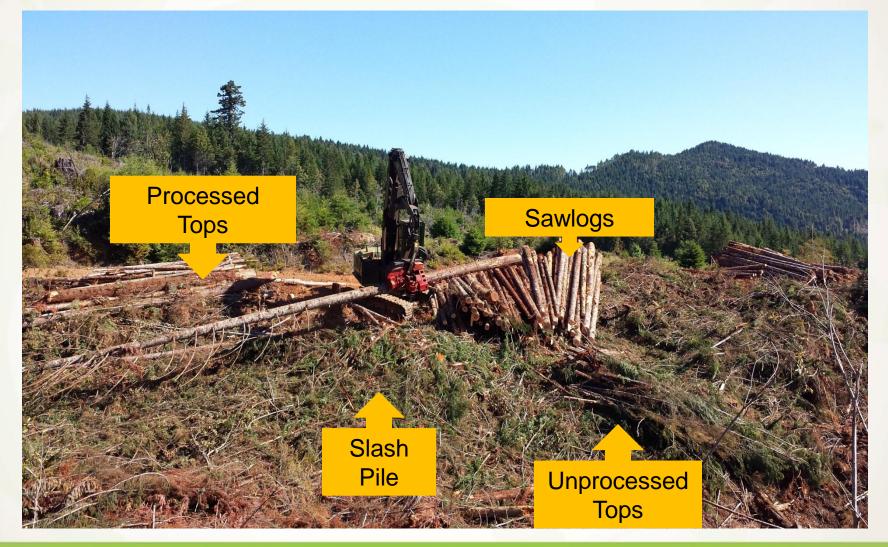
Sorting and arrangement of forest residues


- BCT(torrefaction, biochar, and gasification) can enhance the economic potential of these residues
- Require higher quality feedstock: uniform in size, moisture content, and contamination
- Difficult to produce quality feedstock from forest residues containing mixed materials

Sorting tree tops

Aim

- Estimate the cost differences associated with the varying degrees of processing and sorting forest residues
- Identify major factors that affect the overall cost and productivity
- Estimate the moisture content reduction in forest residues through different arrangement patterns



Sorting and processing tops

How and what we did ...

Productivity

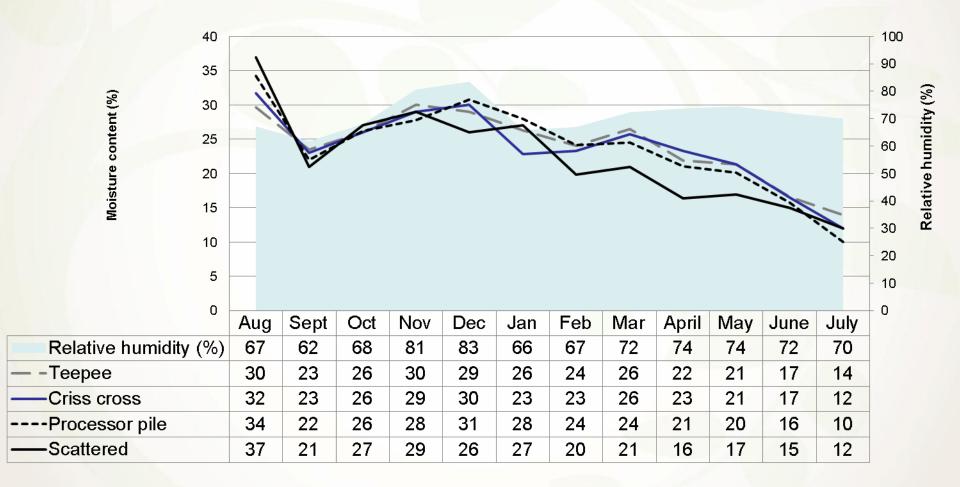
- Stand inventory
- Time and motion study
- Log deck scaling
- Scale tickets
- Machine rate calculation

Influential factors

Standardized comparison Component analysis

Transect
Sampling
Disc
collected
Oven drying
Weather
data

WASTER WISDON



Cost of operation

Sawlog (\$/MBF)

	Sorting			
	No sorting	Moderate	Intensive	
Feller Buncher	\$ 13.28	\$ 1 <mark>2.46</mark>	\$ 15.43	
Shovel	\$ 45.68	\$ 47.43	\$ 46.30	
Processor	\$ 18.98	\$ <mark>21.9</mark> 7	\$ 26.04	
Loader (loading)	\$ 12.64	\$ 12.31	\$ 12.40	
Loader (sorting)	\$ 6.18	\$ 6.0 <mark>8</mark>	\$ 6.02	
Total	\$ 96.76	\$ 100.24	\$ 106.19	
ENERGY			Wast	

Moisture content reduction

Managerial Impacts

- Increase in cost due to sorting and processing of forest residues : \$ 465/ acre
- Saving in site preparation cost: \$ 300 800 / acre

Additional revenue

- Production of higher quality comminuted feedstock
- Market for "tree-top" logs as dowel, post-pole, etc.

Thank you

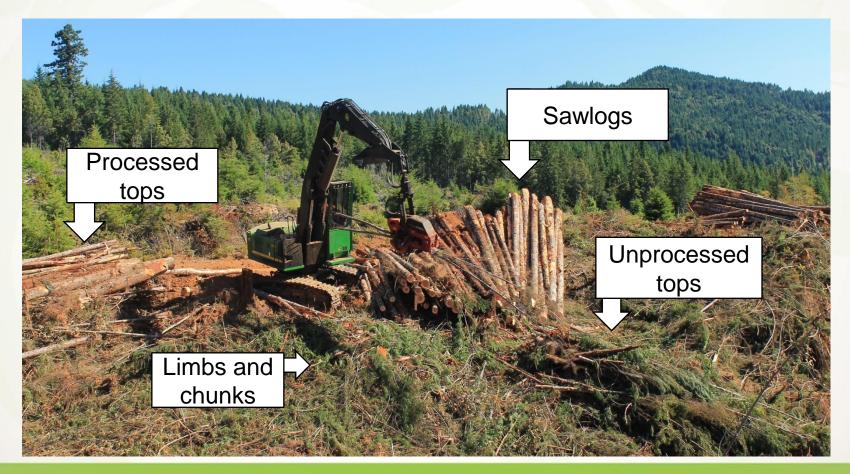
Contact: Anil Kizha. anil.kizha@maine.edu Ph: (225)22-0037

Evaluating the quality of feedstock produced from sorted forest residues

Presented by:

Joel Bisson

Graduate Student Department of Forestry and Wildland Resources Humboldt State University Arcata, CA


Forest Operations Laboratory

Why quantify feedstock quality?

1. Compare feedstock generated from grinding slash with chips generated from sorted residues

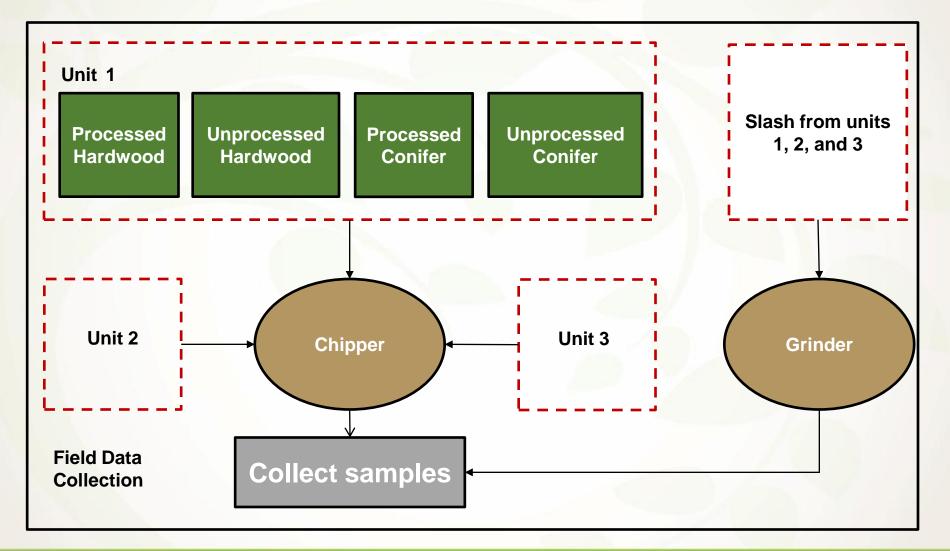
Why quantify feedstock quality?

- 2. Provide BCT research team with specific characteristics that are possible from forest residues.
- Particle size
- Moisture content
- Ash content
- Bulk density

Why quantify feedstock quality?

	Current desired feedstock specifications			
Biomass Conversion Technology	Particle size (inch)	Moisture Content (% wet basis)	Ash content (%)	
Torrefaction	< 1.5	< 30	?	
Densification	< 2	< 15	NA	
Pyrolysis	< 4	< 25	< 20%	

Material generated from sorting and processing residues



Experimental design

Characterizing different material types

Material type		Bark cover (%)	Average volume (cubic feet/piece)	
Processed conifer	PC	68	5.1	
Unprocessed conifer	UC	92	2.9	
Processed hardwood	PH	71	5.3	
Unprocessed hardwood	UH	95	2.5	

- 24% reduction in bark cover as a result of processing
- Processed material was greater in volume

Field data collection

Chipping processed and unprocessed, conifer and hardwood stems and tops

- A total of 156 samples were collected
- Three day operation

Field data collection

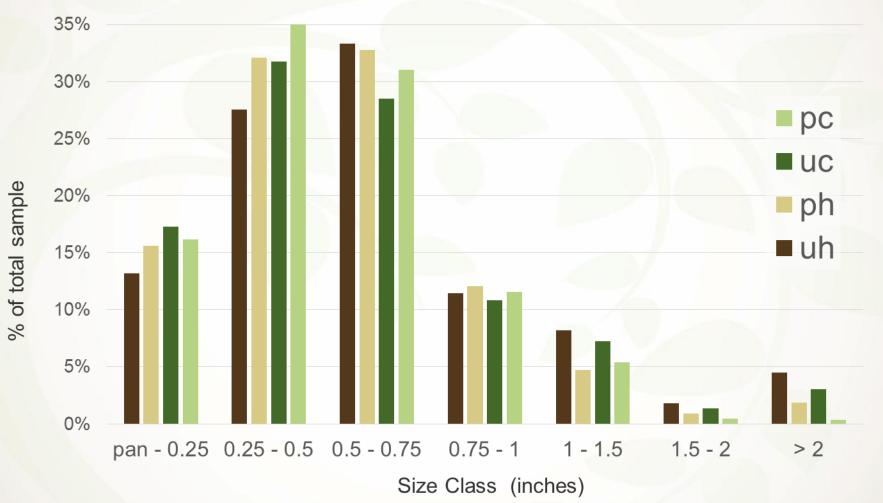
Grinding slash material

Laboratory analysis

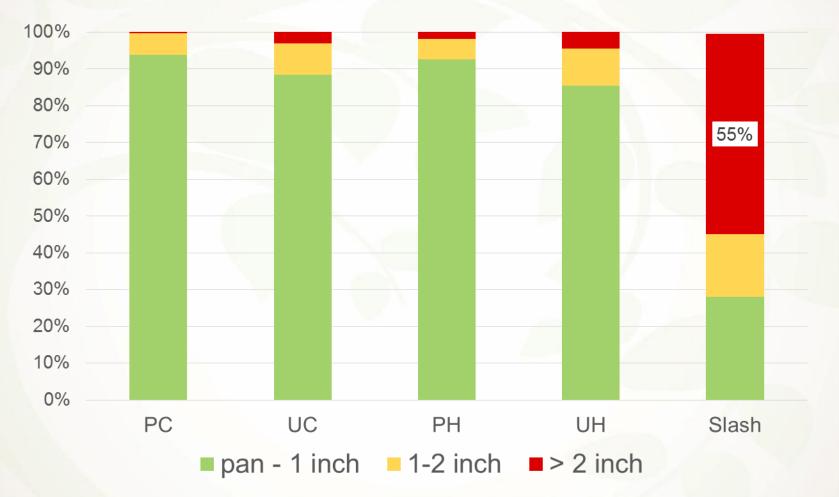
- Particle size distribution
- Moisture content
- Bulk density
- Ash content

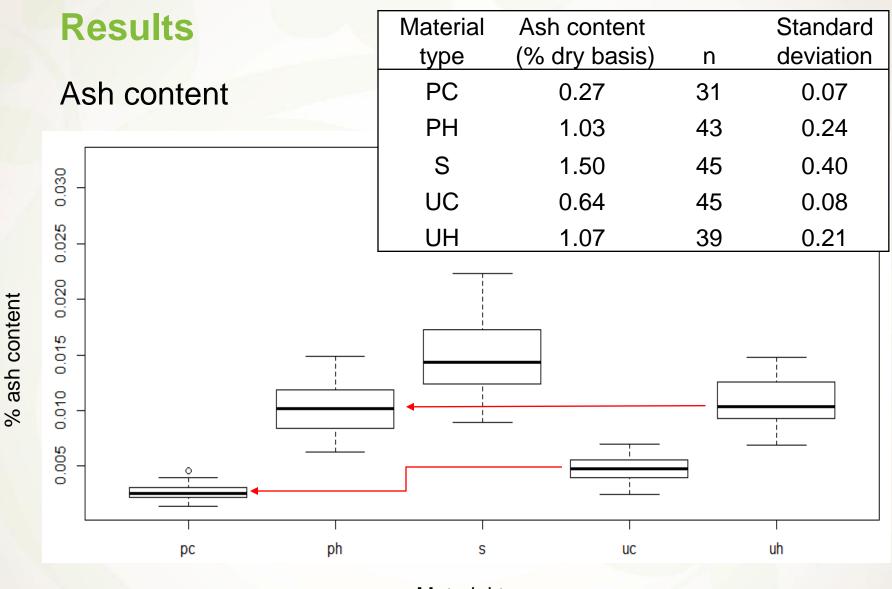
Results

Material type	Particle size (in)	Ash content (%)	Moisture content (%)	Bulk density (lb/ft^3)
Processed conifer	0.68	0.27	26	14.24
Unprocessed conifer	0.72	0.64	27	14.92
Processed hardwood	0.71	1.03	29	20.11
Unprocessed hardwood	0.81	1.07	27	19.34
Slash	1.87	1.50	19	8.57



Results


Particle size distribution


Results

Comparison between chips and grindings

Material type

Conclusions

- Sorting stem wood and tops from other residues during a timber harvest operation facilitates the use of a chipper.
- The chipper provided a larger proportion of chips within the target size classes compared to grindings.
- Sorted material produced a feedstock lower in ash content compared to ground slash.
- Through sorting and chipping we were able to improve feedstock quality providing evidence that may justify the additional cost to sort.

Thank You

<u>Contact:</u> PH: 707.826.4083 Joel.Bisson@humboldt.edu

Conceptual Specification of Forest Residue Balers

Jim Dooley - Presenter Chris Lanning Dave Lanning Nick Owen Jason Perry

forestconcepts[™]

the practice of engineering is as much negotiation and compromise as it is analytic

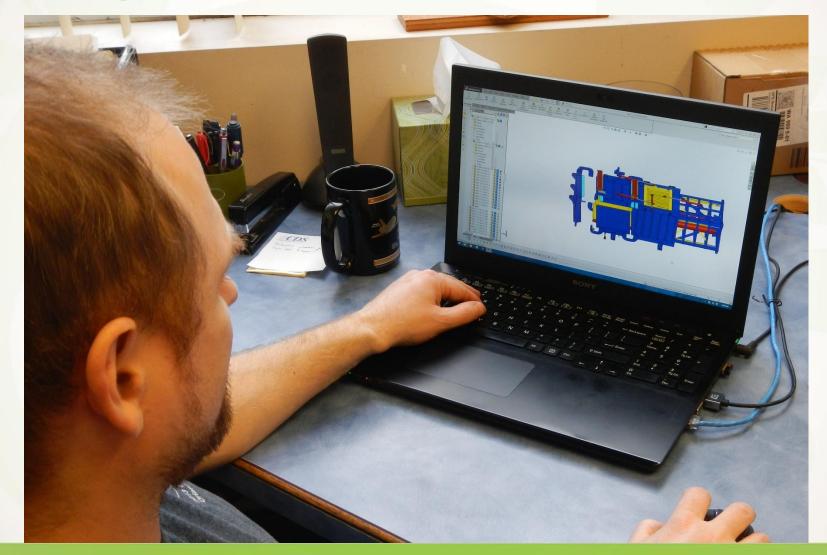
Louis Bucciarelli Designing Engineers

Why Bale? Operational Objective: Enable cost-effective collection of branches & tops

Biomass Baling - Minimize costs for collection, handling, storage, and shipping

Higher density is better:

- reduces storage space,
- increases transport payload,
- enables more efficient grinding
- Trade-off against heavier baler and more fuel consumption by baler


Rectangular bales are better:

- handling just like other baled recyclables and hay
- use of conventional bale handling equipment
- safer stacking on trucks and in bale-yards

Design of a New Class of Balers

Who Cares? Who's Affected?

Influencers & Constraint Owners	Direct Stakeholders
Landowner / Land Manager	Baler Owner
Forester/Logging Supervisor	Baler Operator
Forest Operations Contractor	Baler Mechanic
Biomass Hauling Contractor	Baler Manufacturer
Biomass Bale-Yard Manager	Baler Hauler (mobilization and
Forest Operations Safety Regulator	moving)
Fire Protection Regulator	Equipment Dealer/Parts-Service
Invasive Species & Diseases	Provider
Regulators	Bale Hauling Truck Driver
Insurance Carrier	Bale Handling Equipment Operator
Financial Institution/Credit Provider	Biomass Grinder Operator
Environmental Sustainability Interests	
Bioenergy Advocacy Interests	
Forest Products Certification Bodies	

What's Important to Them?

- » Safety everyone defines safety in their own context
- » Cost of ownership and operation
- » Bale size, shape, weight, durability, ...
- » Productivity of baler and "system" in the context of operational requirements
- » Bale processing implications with horizontal or tub grinders
- » Bale logistics system complexity from logging unit to end user
- » Maintenance intensity and complexity
- » Noise, dust, ...
- » Necessary minutia fuel type, spark arresters, controls, ...

Customer Requirements are Bimodal Need Two Basic Baler Models

Highly mobile & agile system to recover small spatially dispersed piles – 80% of the machines, 40% of the biomass

- > 0.3 3 tons per pile or roadside windrow
- Piles 10 1,000 meters apart
- Objective: Biomass removal at a reasonable cost

High production system for large piles at landings with good truck access -20% of the machines, 60% of the biomass

- 20 200 tons per pile or continuous large windrow
- Biomass forwarders may bring piles from 1-km radius to the baling operation
- > Objectives:
 - Highest production rates with low operating cost per ton baled
 - Provide alternative to in-woods grinding and bulk hauling

Other Stakeholder-Driven Top-Level Design Specifications

Minimize operators

- Wireless remote-operate from tracked grapple-loader
- Eliminate ground crew and human chainsaw operators

Minimize cost and time for moving to and within forest

- Physical size does not require oversize load permits
- Gross weight does not require overweight load permits
- Enable transport under a range of contractor operating paradigms

Modular baler unit

- Baler independent of carrier to enable mounting on "anything"
- Forwarder, 6x6 truck chassis, tracked undercarriage, hook-lift frame

Forest Biomass Utility Baler (conceptual)

Modular baler unit that can be mounted to:

- On-road or off-road trailer
- Log forwarder
- Tracked undercarriage
- Truck chassis or flatbed truck
- Hook-lift skid

Bale size and weight optimized for:

- Skid-steer loader handling
- Smaller Peterson* horizontal grinders

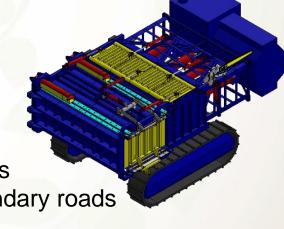
Primary uses:

- Baling roadside windrows and supporting thinning crews
- Baling slash from keyhole and stranded landings
- Recovering dispersed slash

Forest Biomass Large Baler (conceptual)

Modular baler unit that can be mounted to:

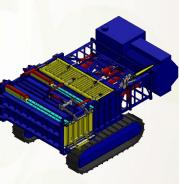
- Tracked undercarriage
 - remote-operated by loader)
- Off-road/mining truck chassis
- Log forwarder
- On-road or off-road trailer


Bale size and weight optimized for:

- Track-hoe and off-road forklift handling
- Largest Peterson* horizontal grinders

Primary uses:

- Baling piled slash at cable and ground logging sites
- Baling dispersed slash piles within units and secondary roads
- As an alternative to in-woods grinding



Conceptual Forest Residuals Balers

(Updated October 1, 2015)

			Conceptual BRDI Project Balers	
	FCLLC Engineering Prototype (FCEP)	Urban Chipper Replacement	Forest Biomass Utility Baler	Forest Biomass Large Baler
Bale Size (inches)	32x48x56	36x48x72	32x48x56	34x48x96
Bale Density (lb/cu.ft – @ 50% MC wb)	15-25	15-20	20-30	20-30
Bale Weight (lb)	800 - 1,400	1,000 - 1,400	1,000 – 1,500	2,000 - 2,700
Loader	Self-loading grapple	Self-loading grapple	Self-loading grapple	Track-hoe with brush grapple
Theoretical/Operational Capacity (bales/hr)	3/2	5/3	10/4	18/10
Horsepower	28	49	49	260
Crew	2 (manual tie)	2 (manual tie)	1 (auto-tie)	0 (remote-operated)
Running Gear	5 th Wheel Trailer	Category 3 trailer	Modular	Tracked
Capital Cost (\$) Est.		\$110,000	\$130,000	\$350,000

Jim Dooley jdooley@forestconcepts.com

Thank You

www.forestconcepts.com

* Peterson is a brand of Peterson Pacific Corporation Mention of corporations or brand names does not constitute an endorsement or recommendation.

Baler development was supported in-part by the CSREES Small Business Innovation Research program of the U.S. Department of Agriculture, grants 2005-33610-15483 and 2006-33610-17595.

Current BRDI project is supported by interagency Biomass Research and Development Initiative contract DE-EE0006297 managed by U.S. Department of Energy <u>Contact:</u> Forest Concepts, LLC 3320 W. Valley Hwy. N., Ste D110 Auburn, WA 98001 Ph: 253.333.9663

Production of Quality Feedstock From Forest Residues for Emerging Biomass Conversion Technologies

For more information please visit WasteToWisdom.com