Testing of Norris Thermal Technologies
Pilot Scale Torrefier at Big Lagoon, CA

Mark Severy
Research Engineer
Schatz Energy Research Center
Humboldt State University

June 29, 2016
Outline

1. Testing Background
2. Reactor Temperature Profile
3. Results: Torrefied Biomass Characteristics
4. Conclusions
5. Lessons Learned from Testing
Torrefaction Testing Site

» Old mill in Big Lagoon, CA
» July – August 2015
» Tested with multiple feedstocks
» Feedstocks obtained from nearby forests
Torrefaction Testing Site

» Test Objectives:

» Understand pilot scale unit to inform construction of larger torrefier
» Feedstock tolerance
» Product characterization
» Mass and energy balance
Tests were conducted with various feedstocks at different residence times and reactor temperatures.

<table>
<thead>
<tr>
<th>Species</th>
<th>Douglas Fir</th>
<th>Redwood</th>
<th>Tan Oak</th>
<th>Slash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comminution Method</td>
<td>Chipped & Screened</td>
<td>Chipped & Screened</td>
<td>Chipped & Screened</td>
<td>Chipped & Screened</td>
</tr>
<tr>
<td>Contaminant</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none added</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>4-9%</td>
<td>10-27%</td>
<td>3-9%</td>
<td>18-32%</td>
</tr>
<tr>
<td>Residence Time (min)</td>
<td>3 - 6</td>
<td>8 - 15</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Target Temp. (°C)</td>
<td>300</td>
<td>400</td>
<td>300</td>
<td>350</td>
</tr>
</tbody>
</table>
Torrefaction Lab Analysis Plan

Key:
- Processing Step
- Measurement
- Calculation

1. In-field
 - 5g
 - Moisture Content
 - >500g
 - Bulk Density

2. -1kg
 - Hydrophobicity

3. -2kg
 - Grindability

4. <100g
 - Size Reduction
 - Ash Content
 - Volatile Matter
 - Fixed Carbon

5. <100g
 - Size & Moisture Reduction
 - Calorific Value (HHV)
Process Instrumentation and Material Flow

» Torrefaction Partner: Norris Thermal Technologies
» Technology: Pilot Scale Pyrolytic Screw
» Screw length: ~160 cm
Reactor Temperatures versus Time

Reactor temperatures vary with time and position.

Test data for slash feedstock at 7% moisture with 6 minute residence time at 350 °C.
Reactor Temperature Profile

Possible air leak through output air lock.
Moisture Content

Product moisture content averaged 1%.

- Slash
- Tanoak
- Redwood
- Douglas Fir

Moisture Content
Water Absorptivity

Product absorptivity averaged 30-50% lower than feedstock

- Slash
- Tanoak
- Redwood
- Douglas Fir

Absorptivity averages:
- Feedstock: 15-20%
- Product: 5-10%
Energy Density of Torrefied Biomass

Higher heating value of torrefied biomass varies with residence time, reactor temperature, and species.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t</th>
<th>p</th>
<th>Lower Limit 95%</th>
<th>Upper Limit 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir</td>
<td>MJ/kg</td>
<td>7.74</td>
<td>2.04</td>
<td>3.80</td>
<td>0.058%</td>
<td>2.96</td>
<td>12.52</td>
</tr>
<tr>
<td>Tan Oak</td>
<td>MJ/kg</td>
<td>8.45</td>
<td>1.94</td>
<td>4.36</td>
<td>0.012%</td>
<td>3.90</td>
<td>13.00</td>
</tr>
<tr>
<td>Redwood</td>
<td>MJ/kg</td>
<td>9.21</td>
<td>1.87</td>
<td>4.91</td>
<td>0.002%</td>
<td>4.81</td>
<td>13.61</td>
</tr>
<tr>
<td>Slash</td>
<td>MJ/kg</td>
<td>8.46</td>
<td>1.97</td>
<td>4.29</td>
<td>0.015%</td>
<td>3.83</td>
<td>13.10</td>
</tr>
<tr>
<td>Tsky2</td>
<td>(MJ/kg)/K</td>
<td>0.0333</td>
<td>0.0060</td>
<td>5.58</td>
<td>0.0003%</td>
<td>0.0193</td>
<td>0.0474</td>
</tr>
<tr>
<td>Residence Time</td>
<td>(MJ/kg)/min</td>
<td>0.347</td>
<td>0.102</td>
<td>3.39</td>
<td>0.18%</td>
<td>0.107</td>
<td>0.588</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>(MJ/kg)/%</td>
<td>4.22</td>
<td>2.28</td>
<td>1.85</td>
<td>7.32%</td>
<td>-1.13</td>
<td>9.58</td>
</tr>
</tbody>
</table>
Yield Rate

Yield rate influenced by reactor temperature and species.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t</th>
<th>p</th>
<th>Lower Limit 95%</th>
<th>Upper Limit 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir</td>
<td>-</td>
<td>1.93</td>
<td>0.17</td>
<td>11.45</td>
<td>4.9E-13</td>
<td>1.54</td>
<td>2.33</td>
</tr>
<tr>
<td>Tan Oak</td>
<td>-</td>
<td>1.82</td>
<td>0.16</td>
<td>11.36</td>
<td>6.1E-13</td>
<td>1.45</td>
<td>2.20</td>
</tr>
<tr>
<td>Redwood</td>
<td>-</td>
<td>1.90</td>
<td>0.16</td>
<td>12.20</td>
<td>9.0E-14</td>
<td>1.53</td>
<td>2.26</td>
</tr>
<tr>
<td>Slash</td>
<td>-</td>
<td>1.88</td>
<td>0.16</td>
<td>11.46</td>
<td>4.8E-13</td>
<td>1.49</td>
<td>2.26</td>
</tr>
<tr>
<td>Tsky2</td>
<td>1/K</td>
<td>-0.0036</td>
<td>0.0005</td>
<td>-7.26</td>
<td>2.5E-08</td>
<td>-0.0048</td>
<td>-0.0024</td>
</tr>
<tr>
<td>Residence Time</td>
<td>1/min</td>
<td>-0.0090</td>
<td>0.0085</td>
<td>-1.06</td>
<td>30%</td>
<td>-0.029</td>
<td>0.011</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>1/%</td>
<td>-0.22</td>
<td>0.19</td>
<td>-1.15</td>
<td>26%</td>
<td>-0.66</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Conclusions

» Pilot system can process 120 kg/day with moisture content up to 25%.
 » New system designed to process 16 ton/day.

» Electrical demand is approximately 1 kWh/kg of feedstock for heating.
 » New system may have lower specific energy demand due to decreased reactor length to throughput ratio.
Lessons Learned

» Torrefier intolerant of larger particles > 1” due to bridging in the hopper.
 » Feeding system is redesigned to widen the range of acceptable feedstocks.

» Air locks leaked excess oxygen into the reactor causing combustion.
 » New system includes improved air locks and automated control to maintain neutral pressure in the reactor.

» Temperature control thermocouple was inadvertently electrically heated.
 » New system insulates the thermocouple from electrical heating.
Acknowledgements

» Aaron Norris, Norris Thermal Technologies
» Chuck Norris, Norris Thermal Technologies
» Charles Chamberlin, Ph.D., Schatz Energy Research Center